Polypyrrole-coated chainlike gold nanoparticle architectures with the 808 nm photothermal transduction efficiency up to 70%.

نویسندگان

  • Min Lin
  • Changrun Guo
  • Jing Li
  • Ding Zhou
  • Kun Liu
  • Xue Zhang
  • Tianshu Xu
  • Hao Zhang
  • Liping Wang
  • Bai Yang
چکیده

Aqueous Au nanoparticles (NPs) are employed as the building blocks to construct chainlike self-assembly architectures, which greatly enhance the photothermal performance at 808 nm. Biocompatible polypyrrole (PPy) is further adopted as the package material to coat Au NP chains, producing stable photothermal agents. As a result of contributions from chainlike Au, the PPy shell, as well as the Au-PPy composite structures, the capability of photothermal transduction at 808 nm is greatly enhanced, represented by the high photothermal transduction efficiency up to 70%. Primary animal experiment proves that the current composite photothermal agents are efficient in inhibiting tumor growth under an 808 nm irradiation, showing the potentials for in vivo photothermal therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy.

Polypyrrole nanoparticles (PPy NPs) exhibit strong absorption in the near infrared (NIR) region. With an excellent photothermal efficiency of ~45% at 808 nm, sub-100 nm PPy NPs are demonstrated to be a promising photothermal agent for in vivo cancer therapy using NIR irradiation.

متن کامل

Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells.

Nanoparticle (NP) mediated photothermal effect shows great potential as a noninvasive method for cancer therapy treatment, but the development of photothermal agents with high photothermal conversion efficiency, small size and good biocompatibility is still a big challenge. Herein, we report Pd NPs with a porous structure exhibiting enhanced near infrared (NIR) absorption as compared to Pd nano...

متن کامل

An investigation into the photothermal effects of multi- functional gold coated Fe3O4 Nanoparticles in the presence of external magnetic field and NIR laser irradiation on model of melanoma cancer cell line B16F10 in C57BL/6 mice

Introduction: Photothermal therapy using gold nanoshells is one of cancer therapy methods. Gold nanoshells generally consist of a silica core and a thin gold shell. Fe3O4@Au core-shell can be used for magnetic targeted therapy. The objective of this study was investigation of the photothermal effects of magnetically targeted Fe3O4@Au NPs and NIR laser irradiation on model of me...

متن کامل

Antimicrobial Photothermal Treatment of Pseudomonas Aeruginosa by a Carbon Nanoparticles-Polypyrrole Nanocomposite

Background: Nowadays, it is needed to explore new routes to treat infectious bacterial pathogens due to prevalence of antibiotic-resistant bacteria. Antimicrobial photothermal therapy (PTT), as a new strategy, eradicates pathogenic bacteria.Objective: In this study, the antimicrobial effects of a carbon nanoparticles-polypyrrole nanocomposite (C-PPy) upon laser irradiation were investigat...

متن کامل

Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography.

The detection of a gold nanoparticle contrast agent is demonstrated using a photothermal modulation technique and phase sensitive optical coherence tomography (OCT). A focused beam from a laser diode at 808 nm is modulated at frequencies of 500 Hz-60 kHz while irradiating a solution containing nanoshells. Because the nanoshells are designed to have a high absorption coefficient at 808 nm, the l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 6 8  شماره 

صفحات  -

تاریخ انتشار 2014